

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	HdfsCLI 2.0.0 documentation 
 
      

    


    
      
          
            
  
HdfsCLI

API and command line interface for HDFS.


	Project homepage on GitHub [https://github.com/mtth/hdfs]

	PyPI entry [https://pypi.python.org/pypi/hdfs/]




Installation

Using pip [http://www.pip-installer.org/en/latest/]:

$ pip install hdfs





By default none of the package requirements for extensions are installed. To do
so simply suffix the package name with the desired extensions:

$ pip install hdfs[avro,dataframe,kerberos]








User guide



	Quickstart
	Configuration

	Command line interface

	Python bindings





	Advanced usage
	Path expansion

	Custom client support

	Tracking transfer progress

	Logging configuration

	Renaming entry points





	API reference
	Client

	Extensions

	Configuration

	Utilities















          

      

      

    


    
         Copyright 2014.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	HdfsCLI 2.0.0 documentation 
 
      

    


    
      
          
            
  
Quickstart


Configuration

HdfsCLI uses aliases to figure out how to connect to different HDFS clusters.
These are defined in HdfsCLI’s configuration file, located by default at
~/.hdfscli.cfg (or elsewhere by setting the HDFSCLI_CONFIG environment
variable correspondingly). See below for a sample configuration defining two
aliases, dev and prod:

[global]
default.alias = dev

[dev.alias]
url = http://dev.namenode:port

[prod.alias]
url = http://prod.namenode:port
root = /jobs/





Each alias is defined as its own ALIAS.alias section which must at least
contain a url option with the URL to the namenode (including protocol and
port). All other options can be omitted. If specified, client determines
which hdfs.client.Client class to use and the remaining options are
passed as keyword arguments to the appropriate constructor. The currently
available client classes are:


	InsecureClient (the default)

	TokenClient



See the Kerberos extension to enable the
KerberosClient and Custom client support to learn
how to use other client classes.

Finally, note the default.alias entry in the global configuration section
which will be used as default alias if none is specified.




Command line interface

HdfsCLI comes by default with a single entry point hdfscli which provides a
convenient interface to perform common actions. All its commands accept an
--alias argument (described above), which defines against which cluster to
operate.


Downloading and uploading files

HdfsCLI supports downloading and uploading files and folders transparently from
HDFS (we can also specify the degree of parallelism by using the --threads
option).

$ # Write a single file to HDFS.
$ hdfscli upload --alias=dev weights.json models/
$ # Read all files inside a folder from HDFS and store them locally.
$ hdfscli download export/results/ "results-$(date +%F)"





If reading (resp. writing) a single file, its contents can also be streamed to
standard out (resp. from standard in) by using - as path argument:

$ # Read a file from HDFS and append its contents to a local log file.
$ hdfscli download logs/1987-03-23.txt - >>logs





By default HdfsCLI will throw an error if trying to write to an existing path
(either locally or on HDFS). We can force the path to be overwritten with the
--force option.




Interactive shell

The interactive command (used also when no command is specified) will create
an HDFS client and expose it inside a python shell (using IPython [http://ipython.org/] if
available). This makes is convenient to perform file system operations on HDFS
and interact with its data. See Python bindings below for an overview of
the methods available.

$ hdfscli --alias=dev

Welcome to the interactive HDFS python shell.
The HDFS client is available as `CLIENT`.

In [1]: CLIENT.list('data/')
Out[1]: ['1.json', '2.json']

In [2]: CLIENT.status('data/2.json')
Out[2]: {
  'accessTime': 1439743128690,
  'blockSize': 134217728,
  'childrenNum': 0,
  'fileId': 16389,
  'group': 'supergroup',
  'length': 2,
  'modificationTime': 1439743129392,
  'owner': 'drwho',
  'pathSuffix': '',
  'permission': '755',
  'replication': 1,
  'storagePolicy': 0,
  'type': 'FILE'
}

In [3]: CLIENT.delete('data/2.json')
Out[3]: True





Using the full power of python lets us easily perform more complex operations
such as renaming folder which match some pattern, deleting files which haven’t
been accessed for some duration, finding all paths owned by a certain user,
etc.




More

Cf. hdfscli --help for the full list of commands and options.






Python bindings


Instantiating a client

The simplest way of getting a hdfs.client.Client instance is by using
the Interactive shell described above, where the client will be
automatically available. To instantiate a client programmatically, there are
two options:

The first is to import the client class and call its constructor directly. This
is the most straightforward and flexible, but doesn’t let us reuse our
configured aliases:

from hdfs import InsecureClient
client = InsecureClient('http://host:port')





The second leverages the hdfs.config.Config class to load an existing
configuration file (defaulting to the same one as the CLI) and create clients
from existing aliases:

from hdfs import Config
client = Config().get_client('dev')








Reading and writing files

The read() method provides a file-like interface for
reading files from HDFS. It must be used in a with block (making sure that
connections are always properly closed):

# Loading a file in memory.
with client.read('features') as reader:
  features = reader.read()

# Directly deserializing a JSON object.
with client.read('model.json') as reader:
  from json import load
  model = load(reader)





If a chunk_size argument is passed, the method will return a generator
instead, making it sometimes simpler to stream the file’s contents.

# Stream a file.
with client.read('features', chunk_size=8096) as reader:
  for chunk in reader:
    pass





Writing files to HDFS is done using the write()
method which returns a file-like writable object:

# Writing part of a file.
with open('samples') as reader, client.write('samples') as writer:
  for line in reader:
    if line.startswith('-'):
      writer.write(line)

# Writing a serialized JSON object.
with client.write('model.json') as writer:
  from json import dump
  dump(model, writer)





For convenience, it is also possible to pass an iterable data argument
directly to the method.

# This is equivalent to the JSON example above.
from json import dumps
client.write('model.json', dumps(model))








Exploring the file system

All Client subclasses expose a variety of methods to
interact with HDFS. Most are modeled directly after the WebHDFS operations, a
few of these are shown in the snippet below:

# Retrieving a file or folder content summary.
content = client.content('dat')

# Listing all files inside a directory.
fnames = client.list('dat')

# Retrieving a file or folder status.
status = client.status('dat/features')

# Renaming ("moving") a file.
client.rename('dat/features', 'features')

# Deleting a file or folder.
client.delete('dat', recursive=True)





Other methods build on these to provide more advanced features:

# Download a file or folder locally.
client.download('dat', 'dat', n_threads=5)

# Get all files under a given folder (arbitrary depth).
import posixpath as psp
fpaths = [
  psp.join(dpath, fname)
  for dpath, _, fnames in client.walk('predictions')
  for fname in fnames
]





See the API reference for the comprehensive list of methods available.




Checking path existence

Most of the methods described above will raise an HdfsError
if called on a missing path. The recommended way of checking whether a path
exists is using the content() or
status() methods with a strict=False argument (in
which case they will return None on a missing path).




More

See the Advanced usage section to learn more.









          

      

      

    


    
         Copyright 2014.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	HdfsCLI 2.0.0 documentation 
 
      

    


    
      
          
            
  
Advanced usage


Path expansion

All Client methods provide a path expansion functionality
via the resolve() method. It enables the use of
special markers to identify paths. For example, it currently supports the
#LATEST marker which expands to the last modified file inside a given folder.

# Load the most recent data in the `tracking` folder.
with client.read('tracking/#LATEST') as reader:
  data = reader.read()





See the method’s documentation for more information.




Custom client support

In order for the CLI to be able to instantiate arbitrary client classes, it has
to be able to discover these first. This is done by specifying where they are
defined in the global section of HdfsCLI’s configuration file. For example,
here is how we can make the KerberosClient class
available:

[global]
autoload.modules = hdfs.ext.kerberos





More precisely, there are two options for telling the CLI where to load the
clients from:


	autoload.modules, a comma-separated list of modules (which must be on
python’s path).

	autoload.paths, a comma-separated list of paths to python files.



Implementing custom clients can be particularly useful for passing default
options (e.g. a custom session argument to each client). We describe below a
working example implementing a secure client with optional custom certificate
support.

We first implement our new client and save it somewhere, for example
/etc/hdfscli.py.

from hdfs import Client
from requests import Session

class SecureClient(Client):

  """A new client subclass for handling HTTPS connections.

  :param url: URL to namenode.
  :param cert: Local certificate. See `requests` documentation for details
    on how to use this.
  :param verify: Whether to check the host's certificate.
  :param \*\*kwargs: Keyword arguments passed to the default `Client`
    constructor.

  """

  def __init__(self, url, cert=None, verify=True, **kwargs):
    session = Session()
    if ',' in cert:
      sessions.cert = [path.strip() for path in cert.split(',')]
    else:
      session.cert = cert
    if isinstance(verify, basestring): # Python 2.
      verify = verify.lower() in ('true', 'yes', 'ok')
    session.verify = verify
    super(SecureClient, self).__init__(url, session=session, **kwargs)





We then edit our configuration to tell the CLI how to load this module and
define a prod alias using our new client:

[global]
autoload.paths = /etc/hdfscli.py

[prod.alias]
client = SecureClient
url = https://host:port
cert = /etc/server.crt, /etc/key





Note that options used to instantiate clients from the CLI (using
hdfs.client.Client.from_options() under the hood) are always passed in as
strings. This is why we had to implement some parsing logic in the
SecureClient constructor above.




Tracking transfer progress

The read(), upload(),
download() client methods accept a progress
callback argument which can be used to track transfers. The passed function
will be called every chunk_size bytes with two arguments:


	The source path of the file currently being transferred.

	The number of bytes currently transferred for this file or -1 to signal
that this file’s transfer has just finished.



Below is an implementation of a toy tracker which simply outputs to standard
error the total number of transferred bytes each time a file transfer completes
(we must still take care to ensure correct behavior even during multi-threaded
transfers).

from sys import stderr
from threading import Lock

class Progress(object):

  """Basic progress tracker callback."""

  def __init__(self):
    self._data = {}
    self._lock = Lock()

  def __call__(self, hdfs_path, nbytes):
    with self._lock:
      if nbytes >= 0:
          self._data[hdfs_path] = nbytes
      else:
        stderr.write('%s\n' % (sum(self._data.values()), ))





Finally, note that the write() method doesn’t expose
a progress argument since this functionality can be replicated by passing a
custom data generator (or within the context manager).




Logging configuration

It is possible to configure and disable where the CLI logs are written for each
entry point. To do this, we can set the following options in its corresponding
section (the entry point’s name suffixed with .command). For example:

[hdfscli-avro.command]
log.level = INFO
log.path = /tmp/hdfscli/avro.log





The following options are available:


	log.level, handler log level (defaults to DEBUG).

	log.path, path to log file. The log is rotated every day (keeping a single
copy). The default is a file named COMMAND.log in your current temporary
directory. It is possible to view the currently active log file at any time
by using the --log option at the command line.

	log.disable, disable logging to a file entirely (defaults to False).






Renaming entry points

By default the command line entry point will be named hdfscli. You can choose
another name by specifying the HDFSCLI_ENTRY_POINT environment variable at
installation time:

$ HDFSCLI_ENTRY_POINT=hdfs pip install hdfs





Extension prefixes will be adjusted similarly (e.g. in the previous example,
hdfscli-avro would become hdfs-avro).







          

      

      

    


    
         Copyright 2014.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	HdfsCLI 2.0.0 documentation 
 
      

    


    
      
          
            
  
API reference


Client

WebHDFS API clients.


	
class hdfs.client.Client(url, root=None, proxy=None, timeout=None, session=None)

	Bases: object

Base HDFS web client.





	Parameters:	
	url – Hostname or IP address of HDFS namenode, prefixed with protocol,
followed by WebHDFS port on namenode.

	proxy – User to proxy as.

	root – Root path, this will be prefixed to all HDFS paths passed to the
client. If the root is relative, the path will be assumed relative to the
user’s home directory.

	timeout – Connection timeouts, forwarded to the request handler. How
long to wait for the server to send data before giving up, as a float, or a
(connect_timeout, read_timeout) tuple. If the timeout is reached, an
appropriate exception will be raised. See the requests [http://docs.python-requests.org/en/latest/api/#requests.request] documentation for
details.

	session – requests.Session instance, used to emit all requests.









In general, this client should only be used directly when its subclasses
(e.g. InsecureClient, TokenClient, and others provided by
extensions) do not provide enough flexibility.


	
checksum(hdfs_path)

	Get a remote file’s checksum.





	Parameters:	hdfs_path – Remote path. Must point to a file.










	
content(hdfs_path, strict=True)

	Get ContentSummary [http://hadoop.apache.org/docs/r1.0.4/webhdfs.html#ContentSummary] for a file or folder on HDFS.





	Parameters:	
	hdfs_path – Remote path.

	strict – If False, return None rather than raise an exception if
the path doesn’t exist.














	
delete(hdfs_path, recursive=False)

	Remove a file or directory from HDFS.





	Parameters:	
	hdfs_path – HDFS path.

	recursive – Recursively delete files and directories. By default,
this method will raise an HdfsError if trying to delete a
non-empty directory.









This function returns True if the deletion was successful and False if
no file or directory previously existed at hdfs_path.






	
download(hdfs_path, local_path, overwrite=False, n_threads=1, temp_dir=None, **kwargs)

	Download a file or folder from HDFS and save it locally.





	Parameters:	
	hdfs_path – Path on HDFS of the file or folder to download. If a
folder, all the files under it will be downloaded.

	local_path – Local path. If it already exists and is a directory,
the files will be downloaded inside of it.

	overwrite – Overwrite any existing file or directory.

	n_threads – Number of threads to use for parallelization. A value of
0 (or negative) uses as many threads as there are files.

	temp_dir – Directory under which the files will first be downloaded
when overwrite=True and the final destination path already exists. Once
the download successfully completes, it will be swapped in.

	**kwargs – Keyword arguments forwarded to read(). If no
chunk_size argument is passed, a default value of 64 kB will be used.
If a progress argument is passed and threading is used, care must be
taken to ensure correct behavior.









On success, this method returns the local download path.






	
classmethod from_options(options, class_name='Client')

	Load client from options.





	Parameters:	
	options – Options dictionary.

	class_name – Client class name. Defaults to the base Client
class.









This method provides a single entry point to instantiate any registered
Client subclass. To register a subclass, simply load its
containing module. If using the CLI, you can use the autoload.modules and
autoload.paths options.






	
list(hdfs_path, status=False)

	Return names of files contained in a remote folder.





	Parameters:	
	hdfs_path – Remote path to a directory. If hdfs_path doesn’t exist
or points to a normal file, an HdfsError will be raised.

	status – Also return each file’s corresponding FileStatus [http://hadoop.apache.org/docs/r1.0.4/webhdfs.html#FileStatus].














	
makedirs(hdfs_path, permission=None)

	Create a remote directory, recursively if necessary.





	Parameters:	
	hdfs_path – Remote path. Intermediate directories will be created
appropriately.

	permission – Octal permission to set on the newly created directory.
These permissions will only be set on directories that do not already
exist.









This function currently has no return value as WebHDFS doesn’t return a
meaningful flag.






	
parts(hdfs_path, parts=None, status=False)

	Returns a dictionary of part-files corresponding to a path.





	Parameters:	
	hdfs_path – Remote path.

	parts – List of part-files numbers or total number of part-files to
select. If a number, that many partitions will be chosen at random. By
default all part-files are returned. If parts is a list and one of the
parts is not found or too many samples are demanded, an
HdfsError is raised.

	status – Also return each file’s corresponding FileStatus [http://hadoop.apache.org/docs/r1.0.4/webhdfs.html#FileStatus].














	
read(*args, **kwds)

	Read a file from HDFS.





	Parameters:	
	hdfs_path – HDFS path.

	offset – Starting byte position.

	length – Number of bytes to be processed. None will read the entire
file.

	buffer_size – Size of the buffer in bytes used for transferring the
data. Defaults the the value set in the HDFS configuration.

	chunk_size – If set to a positive number, the context manager will
return a generator yielding every chunk_size bytes instead of a
file-like object.

	progress – Callback function to track progress, called every
chunk_size bytes (not available if the chunk size isn’t specified). It
will be passed two arguments, the path to the file being uploaded and the
number of bytes transferred so far. On completion, it will be called once
with -1 as second argument.









This method must be called using a with block:

with client.read('foo') as reader:
  content = reader.read()





This ensures that connections are always properly closed.






	
rename(hdfs_src_path, hdfs_dst_path)

	Move a file or folder.





	Parameters:	
	hdfs_src_path – Source path.

	hdfs_dst_path – Destination path. If the path already exists and is
a directory, the source will be moved into it. If the path exists and is
a file, this method will raise an HdfsError.














	
resolve(hdfs_path)

	Return absolute, normalized path, with special markers expanded.





	Parameters:	hdfs_path – Remote path.





Currently supported markers:


	'#LATEST': this marker gets expanded to the most recently updated file
or folder. They can be combined using the '{N}' suffix. For example,
'foo/#LATEST{2}' is equivalent to 'foo/#LATEST/#LATEST'.








	
set_owner(hdfs_path, owner=None, group=None)

	Change the owner of file.





	Parameters:	
	hdfs_path – HDFS path.

	owner – Optional, new owner for file.

	group – Optional, new group for file.









At least one of owner and group must be specified.






	
set_permission(hdfs_path, permission)

	Change the permissions of file.





	Parameters:	
	hdfs_path – HDFS path.

	permission – New octal permissions string of file.














	
set_replication(hdfs_path, replication)

	Set file replication.





	Parameters:	
	hdfs_path – Path to an existing remote file. An HdfsError
will be raised if the path doesn’t exist or points to a directory.

	replication – Replication factor.














	
set_times(hdfs_path, access_time=None, modification_time=None)

	Change remote timestamps.





	Parameters:	
	hdfs_path – HDFS path.

	access_time – Timestamp of last file access.

	modification_time – Timestamps of last file access.














	
status(hdfs_path, strict=True)

	Get FileStatus [http://hadoop.apache.org/docs/r1.0.4/webhdfs.html#FileStatus] for a file or folder on HDFS.





	Parameters:	
	hdfs_path – Remote path.

	strict – If False, return None rather than raise an exception if
the path doesn’t exist.














	
upload(hdfs_path, local_path, overwrite=False, n_threads=1, temp_dir=None, chunk_size=65536, progress=None, **kwargs)

	Upload a file or directory to HDFS.





	Parameters:	
	hdfs_path – Target HDFS path. If it already exists and is a
directory, files will be uploaded inside.

	local_path – Local path to file or folder. If a folder, all the files
inside of it will be uploaded (note that this implies that folders empty
of files will not be created remotely).

	overwrite – Overwrite any existing file or directory.

	n_threads – Number of threads to use for parallelization. A value of
0 (or negative) uses as many threads as there are files.

	temp_dir – Directory under which the files will first be uploaded
when overwrite=True and the final remote path already exists. Once the
upload successfully completes, it will be swapped in.

	chunk_size – Interval in bytes by which the files will be uploaded.

	progress – Callback function to track progress, called every
chunk_size bytes. It will be passed two arguments, the path to the
file being uploaded and the number of bytes transferred so far. On
completion, it will be called once with -1 as second argument.

	**kwargs – Keyword arguments forwarded to write().









On success, this method returns the remote upload path.






	
walk(hdfs_path, depth=0, status=False)

	Depth-first walk of remote filesystem.





	Parameters:	
	hdfs_path – Starting path. If the path doesn’t exist, an
HdfsError will be raised. If it points to a file, the returned
generator will be empty.

	depth – Maximum depth to explore. 0 for no limit.

	status – Also return each file or folder’s corresponding FileStatus [http://hadoop.apache.org/docs/r1.0.4/webhdfs.html#FileStatus].









This method returns a generator yielding tuples (path, dirs, files)
where path is the absolute path to the current directory, dirs is the
list of directory names it contains, and files is the list of file names
it contains.






	
write(hdfs_path, data=None, overwrite=False, permission=None, blocksize=None, replication=None, buffersize=None, append=False)

	Create a file on HDFS.





	Parameters:	
	hdfs_path – Path where to create file. The necessary directories will
be created appropriately.

	data – Contents of file to write. Can be a string, a generator or a
file object. The last two options will allow streaming upload (i.e.
without having to load the entire contents into memory). If None, this
method will return a file-like object and should be called using a with
block (see below for examples).

	overwrite – Overwrite any existing file or directory.

	permission – Octal permission to set on the newly created file.
Leading zeros may be omitted.

	blocksize – Block size of the file.

	replication – Number of replications of the file.

	buffersize – Size of upload buffer.

	append – Append to a file rather than create a new one.









Sample usages:

from json import dumps

records = [
  {'name': 'foo', 'weight': 1},
  {'name': 'bar', 'weight': 2},
]

# As a context manager:
with client.write('data/records.jsonl') as writer:
  for record in records:
    writer.write(dumps(record))

# Or, passing in a generator directly:
dumped_records = (dumps(record) for record in records)
client.write('data/records.jsonl', data=dumped_records)














	
class hdfs.client.InsecureClient(url, user=None, **kwargs)

	Bases: hdfs.client.Client

HDFS web client to use when security is off.





	Parameters:	
	url – Hostname or IP address of HDFS namenode, prefixed with protocol,
followed by WebHDFS port on namenode

	user – User default. Defaults to the current user’s (as determined by
whoami).

	**kwargs – Keyword arguments passed to the base class’ constructor.














	
class hdfs.client.TokenClient(url, token, **kwargs)

	Bases: hdfs.client.Client

HDFS web client using Hadoop token delegation security.





	Parameters:	
	url – Hostname or IP address of HDFS namenode, prefixed with protocol,
followed by WebHDFS port on namenode

	token – Hadoop delegation token.

	**kwargs – Keyword arguments passed to the base class’ constructor.
















Extensions

The following extensions are currently available:


Kerberos

Support for clusters using Kerberos authentication.

This extension adds a new hdfs.client.Client subclass,
KerberosClient, which handles authentication appropriately with
Kerberized clusters:

from hdfs.ext.kerberos import KerberosClient
client = KerberosClient('http://host:port')





To expose this class to the command line interface (so that it can be used by
aliases), we add the following line inside the global section of
~/.hdfscli.cfg (or wherever our configuration file is located):

autoload.modules = hdfs.ext.kerberos





Here is what our earlier configuration would look like if we updated it to
support a Kerberized production grid:

[global]
default.alias = dev
autoload.modules = hdfs.ext.kerberos

[dev.alias]
url = http://dev.namenode:port

[prod.alias]
url = http://prod.namenode:port
class = KerberosClient






	
class hdfs.ext.kerberos.KerberosClient(url, mutual_auth='OPTIONAL', max_concurrency=1, **kwargs)

	Bases: hdfs.client.Client

HDFS web client using Kerberos authentication.





	Parameters:	
	url – Hostname or IP address of HDFS namenode, prefixed with protocol,
followed by WebHDFS port on namenode.

	mutual_auth – Whether to enforce mutual authentication or not (possible
values: 'REQUIRED', 'OPTIONAL', 'DISABLED').

	max_concurrency – Maximum number of allowed concurrent requests. This
is required since requests exceeding the threshold allowed by the server
will be unable to authenticate.

	**kwargs – Keyword arguments passed to the base class’ constructor.









To avoid replay errors, a timeout of 1 ms is enforced between requests.








Avro

Read and write Avro files directly from HDFS.

This extension enables streaming decoding and encoding of files from and to
HDFS. It requires the fastavro library.


	AvroWriter writes Avro files on HDFS from python objects.

	AvroReader reads Avro files from HDFS into an iterable of records.



It also features an entry point (named hdfscli-avro by default) which
provides access to the above functionality from the shell. For usage examples
and more information:

$ hdfscli-avro --help






	
class hdfs.ext.avro.AvroReader(client, hdfs_path, parts=None)

	Bases: object

HDFS Avro file reader.





	Parameters:	
	client – hdfs.client.Client instance.

	hdfs_path – Remote path.

	parts – Part-files to read, when reading a distributed file. The
default is to read all part-files in order. See
hdfs.client.Client.parts() for details.









The contents of the file will be decoded in a streaming manner, as the data
is transferred. This makes it possible to use on files of arbitrary size. As
a convenience, the content summary object of the remote file is available on
the reader’s content attribute.

Usage:

with AvroReader(client, 'foo.avro') as reader:
  schema = reader.schema # The remote file's Avro schema.
  content = reader.content # Content metadata (e.g. size).
  for record in reader:
    pass # and its records






	
schema

	Get the underlying file’s schema.

The schema will only be available after entering the reader’s corresponding
with block.










	
class hdfs.ext.avro.AvroWriter(client, hdfs_path, schema=None, codec=None, sync_interval=None, sync_marker=None, **kwargs)

	Bases: object

Write an Avro file on HDFS from python dictionaries.





	Parameters:	
	client – hdfs.client.Client instance.

	hdfs_path – Remote path.

	schema – Avro schema. If not specified, the writer will try to infer it
from the first record sent. There are however limitations regarding what
can be inferred.

	codec – Compression codec. The default is 'null' (no compression).

	sync_interval – Number of bytes after which a block will be written.

	sync_marker – 16 byte tag used for synchronization. If not specified,
one will be generated at random.

	**kwargs – Keyword arguments forwarded to
hdfs.client.Client.write().









Usage:

with AvroWriter(client, 'data.avro') as writer:
  for record in records:
    writer.write(record)






	
schema

	Avro schema.






	
write(record)

	Store a record.





	Parameters:	record – Record object to store.





Only available inside the with block.












Dataframe

Read and write Pandas dataframes directly from HDFS.

Currently only Avro serialization is supported.


	
hdfs.ext.dataframe.read_dataframe(client, hdfs_path)

	Read dataframe from HDFS Avro file.





	Parameters:	
	client – hdfs.client.Client instance.

	hdfs_path – Remote path to an Avro file (potentially distributed).














	
hdfs.ext.dataframe.write_dataframe(client, hdfs_path, df, **kwargs)

	Save dataframe to HDFS as Avro.





	Parameters:	
	client – hdfs.client.Client instance.

	hdfs_path – Remote path where the dataframe will be stored.

	df – Dataframe to store.

	**kwargs – Keyword arguments passed through to
hdfs.ext.avro.AvroWriter.


















Configuration

Command line interface configuration module.

This module provides programmatic access to HdfsCLI’s configuration settings.
In particular it exposes the ability to instantiate clients from aliases (see
Config.get_client()).


	
class hdfs.config.Config(path=None, stream_log_level=None)

	Bases: ConfigParser.RawConfigParser

Configuration class.





	Parameters:	
	path – path to configuration file. If no file exists at that location,
the configuration parser will be empty. If not specified, the value of the
HDFSCLI_CONFIG environment variable is used if it exists, otherwise it
defaults to ~/.hdfscli.cfg.

	stream_log_level – Stream handler log level, attached to the root
logger. A false-ish value will disable this handler. This is particularly
useful with the catch() function which reports exceptions as log
messages.









On instantiation, the configuration object will attempt to load modules
defined in the autoload global options (see Custom client support for more
information).


	
get_client(alias=None)

	Load HDFS client.





	Parameters:	alias – The client to look up. If not specified, the default alias be
used (default.alias option in the global section) if available and an
error will be raised otherwise.





Further calls to this method for the same alias will return the same client
instance (in particular, any option changes to this alias will not be taken
into account).






	
get_log_handler(command)

	Configure and return log handler.





	Parameters:	command – The command to load the configuration for. All options will
be looked up in the [COMMAND.command] section. This is currently only
used for configuring the file handler for logging. If logging is disabled
for the command, a NullHandler will be returned, else a
TimedRotatingFileHandler.














	
class hdfs.config.NullHandler(level=0)

	Bases: logging.Handler

Pass-through logging handler.

This is required for python <2.7.

Initializes the instance - basically setting the formatter to None
and the filter list to empty.


	
emit(record)

	Do nothing.










	
hdfs.config.catch(*error_classes)

	Returns a decorator that catches errors and prints messages to stderr.





	Parameters:	*error_classes – Error classes.





Also exits with status 1 if any errors are caught.








Utilities

Common utilities.


	
class hdfs.util.AsyncWriter(consumer)

	Bases: object

Asynchronous publisher-consumer.





	Parameters:	consumer – Function which takes a single generator as argument.





This class can be used to transform functions which expect a generator into
file-like writer objects. This can make it possible to combine different APIs
together more easily. For example, to send streaming requests:

import requests as rq

with AsyncWriter(lambda data: rq.post(URL, data=data)) as writer:
  writer.write('Hello, world!')






	
flush()

	Pass-through implementation.






	
write(chunk)

	Stream data to the underlying consumer.





	Parameters:	chunk – Bytes to write. These will be buffered in memory until the
consumer reads them.














	
exception hdfs.util.HdfsError(message, *args)

	Bases: exceptions.Exception

Base error class.





	Parameters:	
	message – Error message.

	args – optional Message formatting arguments.














	
hdfs.util.temppath(*args, **kwds)

	Create a temporary path.





	Parameters:	dpath – Explicit directory name where to create the temporary path. A
system dependent default will be used otherwise (cf. tempfile.mkstemp).





Usage:

with temppath() as path:
  pass # do stuff





Any file or directory corresponding to the path will be automatically deleted
afterwards.











          

      

      

    


    
         Copyright 2014.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	HdfsCLI 2.0.0 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   h
   


   
     			

     		
       h	

     
       	[image: -]
       	
       hdfs	
       

     
       	
       	
       hdfs.client	
       

     
       	
       	
       hdfs.config	
       

     
       	
       	
       hdfs.ext.avro	
       

     
       	
       	
       hdfs.ext.dataframe	
       

     
       	
       	
       hdfs.ext.kerberos	
       

     
       	
       	
       hdfs.util	
       

   



          

      

      

    


    
         Copyright 2014.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	HdfsCLI 2.0.0 documentation 
 
      

    


    
      
          
            

Index



 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W
 


A


  	
      
  	AsyncWriter (class in hdfs.util)
  


      
  	AvroReader (class in hdfs.ext.avro)
  


  

  	
      
  	AvroWriter (class in hdfs.ext.avro)
  


  





C


  	
      
  	catch() (in module hdfs.config)
  


      
  	checksum() (hdfs.client.Client method)
  


      
  	Client (class in hdfs.client)
  


  

  	
      
  	Config (class in hdfs.config)
  


      
  	content() (hdfs.client.Client method)
  


  





D


  	
      
  	delete() (hdfs.client.Client method)
  


  

  	
      
  	download() (hdfs.client.Client method)
  


  





E


  	
      
  	emit() (hdfs.config.NullHandler method)
  


  





F


  	
      
  	flush() (hdfs.util.AsyncWriter method)
  


  

  	
      
  	from_options() (hdfs.client.Client class method)
  


  





G


  	
      
  	get_client() (hdfs.config.Config method)
  


  

  	
      
  	get_log_handler() (hdfs.config.Config method)
  


  





H


  	
      
  	hdfs.client (module)
  


      
  	hdfs.config (module)
  


      
  	hdfs.ext.avro (module)
  


      
  	hdfs.ext.dataframe (module)
  


  

  	
      
  	hdfs.ext.kerberos (module)
  


      
  	hdfs.util (module)
  


      
  	HdfsError
  


  





I


  	
      
  	InsecureClient (class in hdfs.client)
  


  





K


  	
      
  	KerberosClient (class in hdfs.ext.kerberos)
  


  





L


  	
      
  	list() (hdfs.client.Client method)
  


  





M


  	
      
  	makedirs() (hdfs.client.Client method)
  


  





N


  	
      
  	NullHandler (class in hdfs.config)
  


  





P


  	
      
  	parts() (hdfs.client.Client method)
  


  





R


  	
      
  	read() (hdfs.client.Client method)
  


      
  	read_dataframe() (in module hdfs.ext.dataframe)
  


  

  	
      
  	rename() (hdfs.client.Client method)
  


      
  	resolve() (hdfs.client.Client method)
  


  





S


  	
      
  	schema (hdfs.ext.avro.AvroReader attribute)
  


      	
        
  	(hdfs.ext.avro.AvroWriter attribute)
  


      


      
  	set_owner() (hdfs.client.Client method)
  


      
  	set_permission() (hdfs.client.Client method)
  


  

  	
      
  	set_replication() (hdfs.client.Client method)
  


      
  	set_times() (hdfs.client.Client method)
  


      
  	status() (hdfs.client.Client method)
  


  





T


  	
      
  	temppath() (in module hdfs.util)
  


  

  	
      
  	TokenClient (class in hdfs.client)
  


  





U


  	
      
  	upload() (hdfs.client.Client method)
  


  





W


  	
      
  	walk() (hdfs.client.Client method)
  


      
  	write() (hdfs.client.Client method)
  


      	
        
  	(hdfs.ext.avro.AvroWriter method)
  


        
  	(hdfs.util.AsyncWriter method)
  


      


  

  	
      
  	write_dataframe() (in module hdfs.ext.dataframe)
  


  







          

      

      

    


    
         Copyright 2014.
      Created using Sphinx 1.3.1.
    

  _static/down.png





_static/comment-close.png





_static/minus.png





_static/ajax-loader.gif





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/up.png





_static/plus.png





_static/up-pressed.png





_static/down-pressed.png





_modules/index.html


    
      Navigation


      
        		
          index


        		
          modules |


        		HdfsCLI 2.0.0 documentation »

 
      


    


    
      
          
            
  All modules for which code is available


		hdfs.client


		hdfs.config


		hdfs.ext.avro


		hdfs.ext.dataframe


		hdfs.ext.kerberos


		hdfs.util






          

      

      

    


    
        © Copyright 2014.
      Created using Sphinx 1.3.1.
    

  

