
hdfs Documentation
Release 2.6.0

Author

Apr 23, 2023

Contents

1 Installation 3

2 User guide 5
2.1 Quickstart . 5
2.2 Advanced usage . 9
2.3 API reference . 12

3 Sample script 25

Python Module Index 27

Index 29

i

ii

hdfs Documentation, Release 2.6.0

API and command line interface for HDFS.

• Project homepage on GitHub

• PyPI entry

Contents 1

https://github.com/mtth/hdfs
https://pypi.python.org/pypi/hdfs/

hdfs Documentation, Release 2.6.0

2 Contents

CHAPTER 1

Installation

Using pip:

$ pip install hdfs

By default none of the package requirements for extensions are installed. To do so simply suffix the package name
with the desired extensions:

$ pip install hdfs[avro,dataframe,kerberos]

3

http://www.pip-installer.org/en/latest/

hdfs Documentation, Release 2.6.0

4 Chapter 1. Installation

CHAPTER 2

User guide

2.1 Quickstart

This page first goes through the steps required to configure HdfsCLI’s command line interface then gives an overview
of the python API. If you are only interested in using HdfsCLI as a library, then feel free to jump ahead to the Python
bindings section.

2.1.1 Configuration

HdfsCLI uses aliases to figure out how to connect to different HDFS clusters. These are defined in HdfsCLI’s config-
uration file, located by default at ~/.hdfscli.cfg (or elsewhere by setting the HDFSCLI_CONFIG environment
variable correspondingly). See below for a sample configuration defining two aliases, dev and prod:

[global]
default.alias = dev

[dev.alias]
url = http://dev.namenode:port
user = ann

[prod.alias]
url = http://prod.namenode:port
root = /jobs/

Each alias is defined as its own ALIAS.alias section which must at least contain a url option with the URL to the
namenode (including protocol and port). All other options can be omitted. If specified, client determines which
hdfs.client.Client class to use and the remaining options are passed as keyword arguments to the appropriate
constructor. The currently available client classes are:

• InsecureClient (the default)

• TokenClient

5

hdfs Documentation, Release 2.6.0

See the Kerberos extension to enable the KerberosClient and Custom client support to learn how to use other
client classes.

The url option can be configured to support High Availability namenodes when using WebHDFS, simply add more
URLs by delimiting with a semicolon (;).

Finally, note the default.alias entry in the global configuration section which will be used as default alias if
none is specified.

2.1.2 Command line interface

HdfsCLI comes by default with a single entry point hdfscli which provides a convenient interface to perform
common actions. All its commands accept an --alias argument (described above), which defines against which
cluster to operate.

Downloading and uploading files

HdfsCLI supports downloading and uploading files and folders transparently from HDFS (we can also specify the
degree of parallelism by using the --threads option).

$ # Write a single file to HDFS.
$ hdfscli upload --alias=dev weights.json models/
$ # Read all files inside a folder from HDFS and store them locally.
$ hdfscli download export/results/ "results-$(date +%F)"

If reading (resp. writing) a single file, its contents can also be streamed to standard out (resp. from standard in) by
using - as path argument:

$ # Read a file from HDFS and append its contents to a local log file.
$ hdfscli download logs/1987-03-23.txt - >>logs

By default HdfsCLI will throw an error if trying to write to an existing path (either locally or on HDFS). We can force
the path to be overwritten with the --force option.

Interactive shell

The interactive command (used also when no command is specified) will create an HDFS client and expose it
inside a python shell (using IPython if available). This makes is convenient to perform file system operations on HDFS
and interact with its data. See Python bindings below for an overview of the methods available.

$ hdfscli --alias=dev

Welcome to the interactive HDFS python shell.
The HDFS client is available as `CLIENT`.

In [1]: CLIENT.list('data/')
Out[1]: ['1.json', '2.json']

In [2]: CLIENT.status('data/2.json')
Out[2]: {

'accessTime': 1439743128690,
'blockSize': 134217728,
'childrenNum': 0,
'fileId': 16389,

(continues on next page)

6 Chapter 2. User guide

http://ipython.org/

hdfs Documentation, Release 2.6.0

(continued from previous page)

'group': 'supergroup',
'length': 2,
'modificationTime': 1439743129392,
'owner': 'drwho',
'pathSuffix': '',
'permission': '755',
'replication': 1,
'storagePolicy': 0,
'type': 'FILE'

}

In [3]: CLIENT.delete('data/2.json')
Out[3]: True

Using the full power of python lets us easily perform more complex operations such as renaming folder which match
some pattern, deleting files which haven’t been accessed for some duration, finding all paths owned by a certain user,
etc.

More

Cf. hdfscli --help for the full list of commands and options.

2.1.3 Python bindings

Instantiating a client

The simplest way of getting a hdfs.client.Client instance is by using the Interactive shell described above,
where the client will be automatically available. To instantiate a client programmatically, there are two options:

The first is to import the client class and call its constructor directly. This is the most straightforward and flexible, but
doesn’t let us reuse our configured aliases:

from hdfs import InsecureClient
client = InsecureClient('http://host:port', user='ann')

The second leverages the hdfs.config.Config class to load an existing configuration file (defaulting to the same
one as the CLI) and create clients from existing aliases:

from hdfs import Config
client = Config().get_client('dev')

Reading and writing files

The read() method provides a file-like interface for reading files from HDFS. It must be used in a with block
(making sure that connections are always properly closed):

Loading a file in memory.
with client.read('features') as reader:
features = reader.read()

Directly deserializing a JSON object.
with client.read('model.json', encoding='utf-8') as reader:

(continues on next page)

2.1. Quickstart 7

hdfs Documentation, Release 2.6.0

(continued from previous page)

from json import load
model = load(reader)

If a chunk_size argument is passed, the method will return a generator instead, making it sometimes simpler to
stream the file’s contents.

Stream a file.
with client.read('features', chunk_size=8096) as reader:
for chunk in reader:
pass

Similarly, if a delimiter argument is passed, the method will return a generator of the delimited chunks.

with client.read('samples.csv', encoding='utf-8', delimiter='\n') as reader:
for line in reader:
pass

Writing files to HDFS is done using the write() method which returns a file-like writable object:

Writing part of a file.
with open('samples') as reader, client.write('samples') as writer:

for line in reader:
if line.startswith('-'):

writer.write(line)

Writing a serialized JSON object.
with client.write('model.json', encoding='utf-8') as writer:
from json import dump
dump(model, writer)

For convenience, it is also possible to pass an iterable data argument directly to the method.

This is equivalent to the JSON example above.
from json import dumps
client.write('model.json', dumps(model))

Exploring the file system

All Client subclasses expose a variety of methods to interact with HDFS. Most are modeled directly after the
WebHDFS operations, a few of these are shown in the snippet below:

Retrieving a file or folder content summary.
content = client.content('dat')

Listing all files inside a directory.
fnames = client.list('dat')

Retrieving a file or folder status.
status = client.status('dat/features')

Renaming ("moving") a file.
client.rename('dat/features', 'features')

Deleting a file or folder.
client.delete('dat', recursive=True)

8 Chapter 2. User guide

hdfs Documentation, Release 2.6.0

Other methods build on these to provide more advanced features:

Download a file or folder locally.
client.download('dat', 'dat', n_threads=5)

Get all files under a given folder (arbitrary depth).
import posixpath as psp
fpaths = [

psp.join(dpath, fname)
for dpath, _, fnames in client.walk('predictions')
for fname in fnames

]

See the API reference for the comprehensive list of methods available.

Checking path existence

Most of the methods described above will raise an HdfsError if called on a missing path. The recommended way of
checking whether a path exists is using the content() or status() methods with a strict=False argument
(in which case they will return None on a missing path).

More

See the Advanced usage section to learn more.

2.2 Advanced usage

2.2.1 Path expansion

All Client methods provide a path expansion functionality via the resolve() method. It enables the use of
special markers to identify paths. For example, it currently supports the #LATEST marker which expands to the last
modified file inside a given folder.

Load the most recent data in the `tracking` folder.
with client.read('tracking/#LATEST') as reader:
data = reader.read()

See the method’s documentation for more information.

2.2.2 Custom client support

In order for the CLI to be able to instantiate arbitrary client classes, it has to be able to discover these first. This is
done by specifying where they are defined in the global section of HdfsCLI’s configuration file. For example, here
is how we can make the KerberosClient class available:

[global]
autoload.modules = hdfs.ext.kerberos

More precisely, there are two options for telling the CLI where to load the clients from:

• autoload.modules, a comma-separated list of modules (which must be on python’s path).

• autoload.paths, a comma-separated list of paths to python files.

2.2. Advanced usage 9

hdfs Documentation, Release 2.6.0

Implementing custom clients can be particularly useful for passing default options (e.g. a custom session argument
to each client). We describe below a working example implementing a secure client with optional custom certificate
support.

We first implement our new client and save it somewhere, for example /etc/hdfscli.py.

from hdfs import Client
from requests import Session

class SecureClient(Client):

"""A new client subclass for handling HTTPS connections.

:param url: URL to namenode.
:param cert: Local certificate. See `requests` documentation for details
on how to use this.

:param verify: Whether to check the host's certificate.
:param **kwargs: Keyword arguments passed to the default `Client`
constructor.

"""

def __init__(self, url, cert=None, verify=True, **kwargs):
session = Session()
if ',' in cert:
session.cert = [path.strip() for path in cert.split(',')]

else:
session.cert = cert

if isinstance(verify, basestring): # Python 2.
verify = verify.lower() in ('true', 'yes', 'ok')

session.verify = verify
super(SecureClient, self).__init__(url, session=session, **kwargs)

We then edit our configuration to tell the CLI how to load this module and define a prod alias using our new client:

[global]
autoload.paths = /etc/hdfscli.py

[prod.alias]
client = SecureClient
url = https://host:port
cert = /etc/server.crt, /etc/key

Note that options used to instantiate clients from the CLI (using hdfs.client.Client.from_options()
under the hood) are always passed in as strings. This is why we had to implement some parsing logic in the
SecureClient constructor above.

2.2.3 Tracking transfer progress

The read(), upload(), download() client methods accept a progress callback argument which can be used
to track transfers. The passed function will be called every chunk_size bytes with two arguments:

• The source path of the file currently being transferred.

• The number of bytes currently transferred for this file or -1 to signal that this file’s transfer has just finished.

Below is an implementation of a toy tracker which simply outputs to standard error the total number of transferred
bytes each time a file transfer completes (we must still take care to ensure correct behavior even during multi-threaded

10 Chapter 2. User guide

hdfs Documentation, Release 2.6.0

transfers).

from sys import stderr
from threading import Lock

class Progress(object):

"""Basic progress tracker callback."""

def __init__(self):
self._data = {}
self._lock = Lock()

def __call__(self, hdfs_path, nbytes):
with self._lock:

if nbytes >= 0:
self._data[hdfs_path] = nbytes

else:
stderr.write('%s\n' % (sum(self._data.values()),))

Finally, note that the write() method doesn’t expose a progress argument since this functionality can be repli-
cated by passing a custom data generator (or within the context manager).

2.2.4 Logging configuration

It is possible to configure and disable where the CLI logs are written for each entry point. To do this, we can set the
following options in its corresponding section (the entry point’s name suffixed with .command). For example:

[hdfscli-avro.command]
log.level = INFO
log.path = /tmp/hdfscli/avro.log

The following options are available:

• log.level, handler log level (defaults to DEBUG).

• log.path, path to log file. The log is rotated every day (keeping a single copy). The default is a file named
COMMAND.log in your current temporary directory. It is possible to view the currently active log file at any
time by using the --log option at the command line.

• log.disable, disable logging to a file entirely (defaults to False).

2.2.5 Renaming entry points

By default the command line entry point will be named hdfscli. You can choose another name by specifying the
HDFSCLI_ENTRY_POINT environment variable at installation time:

$ HDFSCLI_ENTRY_POINT=hdfs pip install hdfs

Extension prefixes will be adjusted similarly (e.g. in the previous example, hdfscli-avro would become
hdfs-avro).

2.2. Advanced usage 11

hdfs Documentation, Release 2.6.0

2.3 API reference

2.3.1 Client

WebHDFS API clients.

class hdfs.client.Client(url, root=None, proxy=None, timeout=None, session=None)
Bases: object

Base HDFS web client.

Parameters

• url – Hostname or IP address of HDFS namenode, prefixed with protocol, followed by
WebHDFS port on namenode. You may also specify multiple URLs separated by semi-
colons for High Availability support.

• proxy – User to proxy as.

• root – Root path, this will be prefixed to all HDFS paths passed to the client. If the root is
relative, the path will be assumed relative to the user’s home directory.

• timeout – Connection timeouts, forwarded to the request handler. How long to wait
for the server to send data before giving up, as a float, or a (connect_timeout,
read_timeout) tuple. If the timeout is reached, an appropriate exception will be raised.
See the requests documentation for details.

• session – requests.Session instance, used to emit all requests.

In general, this client should only be used directly when its subclasses (e.g. InsecureClient,
TokenClient, and others provided by extensions) do not provide enough flexibility.

acl_status(hdfs_path, strict=True)
Get AclStatus for a file or folder on HDFS.

Parameters

• hdfs_path – Remote path.

• strict – If False, return None rather than raise an exception if the path doesn’t exist.

allow_snapshot(hdfs_path)
Allow snapshots for a remote folder.

Parameters hdfs_path – Remote path to a direcotry. If hdfs_path doesn’t exist or does
points to a normal file, an HdfsError will be raised. No-op if snapshotting is already
allowed.

checksum(hdfs_path)
Get a remote file’s checksum.

Parameters hdfs_path – Remote path. Must point to a file.

content(hdfs_path, strict=True)
Get ContentSummary for a file or folder on HDFS.

Parameters

• hdfs_path – Remote path.

• strict – If False, return None rather than raise an exception if the path doesn’t exist.

create_snapshot(hdfs_path, snapshotname=None)
Create snapshot for a remote folder where it was allowed.

12 Chapter 2. User guide

http://docs.python-requests.org/en/latest/api/#requests.request
https://hadoop.apache.org/docs/stable2/hadoop-project-dist/hadoop-hdfs/WebHDFS.html#Get_ACL_Status
http://hadoop.apache.org/docs/r1.0.4/webhdfs.html#ContentSummary

hdfs Documentation, Release 2.6.0

Parameters hdfs_path – Remote path to a direcotry. If hdfs_path doesn’t exist, doesn’t
allow to create snapshot or points to a normal file, an HdfsError will be raised.

:param snapshotname snapshot name; if absent, name is generated by the server.

Returns a path to created snapshot.

delete(hdfs_path, recursive=False, skip_trash=True)
Remove a file or directory from HDFS.

Parameters

• hdfs_path – HDFS path.

• recursive – Recursively delete files and directories. By default, this method will raise
an HdfsError if trying to delete a non-empty directory.

• skip_trash – When false, the deleted path will be moved to an appropriate trash folder
rather than deleted. This requires Hadoop 2.9+ and trash to be enabled on the cluster.

This function returns True if the deletion was successful and False if no file or directory previously
existed at hdfs_path.

delete_snapshot(hdfs_path, snapshotname)
Remove snapshot for a remote folder where it was allowed.

Parameters hdfs_path – Remote path to a direcotry. If hdfs_path doesn’t exist or points
to a normal file, an HdfsError will be raised.

:param snapshotname snapshot name; if it does not exist, an HdfsError will be raised.

disallow_snapshot(hdfs_path)
Disallow snapshots for a remote folder.

Parameters hdfs_path – Remote path to a direcotry. If hdfs_path doesn’t exist, points to
a normal file or there are some snapshots, an HdfsError will be raised.

No-op if snapshotting is disallowed/never allowed.

download(hdfs_path, local_path, overwrite=False, n_threads=1, temp_dir=None, **kwargs)
Download a file or folder from HDFS and save it locally.

Parameters

• hdfs_path – Path on HDFS of the file or folder to download. If a folder, all the files
under it will be downloaded.

• local_path – Local path. If it already exists and is a directory, the files will be down-
loaded inside of it.

• overwrite – Overwrite any existing file or directory.

• n_threads – Number of threads to use for parallelization. A value of 0 (or negative)
uses as many threads as there are files.

• temp_dir – Directory under which the files will first be downloaded when
overwrite=True and the final destination path already exists. Once the download
successfully completes, it will be swapped in.

• **kwargs – Keyword arguments forwarded to read(). If no chunk_size argument
is passed, a default value of 64 kB will be used. If a progress argument is passed and
threading is used, care must be taken to ensure correct behavior.

2.3. API reference 13

hdfs Documentation, Release 2.6.0

On success, this method returns the local download path.

classmethod from_options(options, class_name=’Client’)
Load client from options.

Parameters

• options – Options dictionary.

• class_name – Client class name. Defaults to the base Client class.

This method provides a single entry point to instantiate any registered Client subclass. To register a
subclass, simply load its containing module. If using the CLI, you can use the autoload.modules and
autoload.paths options.

list(hdfs_path, status=False)
Return names of files contained in a remote folder.

Parameters

• hdfs_path – Remote path to a directory. If hdfs_path doesn’t exist or points to a
normal file, an HdfsError will be raised.

• status – Also return each file’s corresponding FileStatus.

makedirs(hdfs_path, permission=None)
Create a remote directory, recursively if necessary.

Parameters

• hdfs_path – Remote path. Intermediate directories will be created appropriately.

• permission – Octal permission to set on the newly created directory. These permissions
will only be set on directories that do not already exist.

This function currently has no return value as WebHDFS doesn’t return a meaningful flag.

parts(hdfs_path, parts=None, status=False)
Returns a dictionary of part-files corresponding to a path.

Parameters

• hdfs_path – Remote path. This directory should contain at most one part file per parti-
tion (otherwise one will be picked arbitrarily).

• parts – List of part-files numbers or total number of part-files to select. If a number,
that many partitions will be chosen at random. By default all part-files are returned. If
parts is a list and one of the parts is not found or too many samples are demanded, an
HdfsError is raised.

• status – Also return each file’s corresponding FileStatus.

read(**kwds)
Read a file from HDFS.

Parameters

• hdfs_path – HDFS path.

• offset – Starting byte position.

• length – Number of bytes to be processed. None will read the entire file.

• buffer_size – Size of the buffer in bytes used for transferring the data. Defaults the
the value set in the HDFS configuration.

14 Chapter 2. User guide

http://hadoop.apache.org/docs/r1.0.4/webhdfs.html#FileStatus
http://hadoop.apache.org/docs/r1.0.4/webhdfs.html#FileStatus

hdfs Documentation, Release 2.6.0

• encoding – Encoding used to decode the request. By default the raw data is returned.
This is mostly helpful in python 3, for example to deserialize JSON data (as the decoder
expects unicode).

• chunk_size – If set to a positive number, the context manager will return a generator
yielding every chunk_size bytes instead of a file-like object (unless delimiter is
also set, see below).

• delimiter – If set, the context manager will return a generator yielding each time the
delimiter is encountered. This parameter requires the encoding to be specified.

• progress – Callback function to track progress, called every chunk_size bytes (not
available if the chunk size isn’t specified). It will be passed two arguments, the path to the
file being uploaded and the number of bytes transferred so far. On completion, it will be
called once with -1 as second argument.

This method must be called using a with block:

with client.read('foo') as reader:
content = reader.read()

This ensures that connections are always properly closed.

Note: The raw file-like object returned by this method (when called without an encoding, chunk size,
or delimiter) can have a very different performance profile than local files. In particular, line-oriented
methods are often slower. The recommended workaround is to specify an encoding when possible or read
the entire file before splitting it.

rename(hdfs_src_path, hdfs_dst_path)
Move a file or folder.

Parameters

• hdfs_src_path – Source path.

• hdfs_dst_path – Destination path. If the path already exists and is a directory, the
source will be moved into it. If the path exists and is a file, or if a parent destination
directory is missing, this method will raise an HdfsError.

rename_snapshot(hdfs_path, oldsnapshotname, snapshotname)
Rename snapshot for a remote folder.

Parameters hdfs_path – Remote path to a direcotry. If hdfs_path doesn’t exist or points
to a normal file, an HdfsError will be raised.

:param oldsnapshotname snapshot name; if it does not exist, an HdfsError will be raised.

:param snapshotname new snapshot name; if it does already exist, an HdfsError will be raised.

resolve(hdfs_path)
Return absolute, normalized path, with special markers expanded.

Parameters hdfs_path – Remote path.

Currently supported markers:

• '#LATEST': this marker gets expanded to the most recently updated file or folder. They can be
combined using the '{N}' suffix. For example, 'foo/#LATEST{2}' is equivalent to 'foo/
#LATEST/#LATEST'.

2.3. API reference 15

hdfs Documentation, Release 2.6.0

set_acl(hdfs_path, acl_spec, clear=True)
SetAcl_ or ModifyAcl_ for a file or folder on HDFS.

Parameters

• hdfs_path – Path to an existing remote file or directory. An HdfsError will be raised
if the path doesn’t exist.

• acl_spec – String representation of an ACL spec. Must be a valid string with entries for
user, group and other. For example: "user::rwx,user:foo:rw-,group::r--,
other::---".

• clear – Clear existing ACL entries. If set to false, all existing ACL entries that are
not specified in this call are retained without changes, behaving like ModifyAcl_. For
example: "user:foo:rwx".

.. _SetAcl: SETACL_

set_owner(hdfs_path, owner=None, group=None)
Change the owner of file.

Parameters

• hdfs_path – HDFS path.

• owner – Optional, new owner for file.

• group – Optional, new group for file.

At least one of owner and group must be specified.

set_permission(hdfs_path, permission)
Change the permissions of file.

Parameters

• hdfs_path – HDFS path.

• permission – New octal permissions string of file.

set_replication(hdfs_path, replication)
Set file replication.

Parameters

• hdfs_path – Path to an existing remote file. An HdfsError will be raised if the path
doesn’t exist or points to a directory.

• replication – Replication factor.

set_times(hdfs_path, access_time=None, modification_time=None)
Change remote timestamps.

Parameters

• hdfs_path – HDFS path.

• access_time – Timestamp of last file access.

• modification_time – Timestamps of last file access.

status(hdfs_path, strict=True)
Get FileStatus for a file or folder on HDFS.

Parameters

• hdfs_path – Remote path.

16 Chapter 2. User guide

http://hadoop.apache.org/docs/r1.0.4/webhdfs.html#FileStatus

hdfs Documentation, Release 2.6.0

• strict – If False, return None rather than raise an exception if the path doesn’t exist.

upload(hdfs_path, local_path, n_threads=1, temp_dir=None, chunk_size=65536, progress=None,
cleanup=True, **kwargs)

Upload a file or directory to HDFS.

Parameters

• hdfs_path – Target HDFS path. If it already exists and is a directory, files will be
uploaded inside.

• local_path – Local path to file or folder. If a folder, all the files inside of it will be
uploaded (note that this implies that folders empty of files will not be created remotely).

• n_threads – Number of threads to use for parallelization. A value of 0 (or negative)
uses as many threads as there are files.

• temp_dir – Directory under which the files will first be uploaded when
overwrite=True and the final remote path already exists. Once the upload success-
fully completes, it will be swapped in.

• chunk_size – Interval in bytes by which the files will be uploaded.

• progress – Callback function to track progress, called every chunk_size bytes. It
will be passed two arguments, the path to the file being uploaded and the number of bytes
transferred so far. On completion, it will be called once with -1 as second argument.

• cleanup – Delete any uploaded files if an error occurs during the upload.

• **kwargs – Keyword arguments forwarded to write(). In particular, set
overwrite to overwrite any existing file or directory.

On success, this method returns the remote upload path.

walk(hdfs_path, depth=0, status=False, ignore_missing=False, allow_dir_changes=False)
Depth-first walk of remote filesystem.

Parameters

• hdfs_path – Starting path. If the path doesn’t exist, an HdfsError will be raised. If
it points to a file, the returned generator will be empty.

• depth – Maximum depth to explore. 0 for no limit.

• status – Also return each file or folder’s corresponding FileStatus.

• ignore_missing – Ignore missing nested folders rather than raise an exception. This
can be useful when the tree is modified during a walk.

• allow_dir_changes – Allow changes to the directories’ list to affect the walk. For
example clearing it by setting dirs[:] = [] would prevent the walk from entering
any nested directories. This option can only be set when status is false.

This method returns a generator yielding tuples (path, dirs, files) where path is the absolute
path to the current directory, dirs is the list of directory names it contains, and files is the list of file
names it contains.

write(hdfs_path, data=None, overwrite=False, permission=None, blocksize=None, replication=None,
buffersize=None, append=False, encoding=None)

Create a file on HDFS.

Parameters

• hdfs_path – Path where to create file. The necessary directories will be created appro-
priately.

2.3. API reference 17

http://hadoop.apache.org/docs/r1.0.4/webhdfs.html#FileStatus

hdfs Documentation, Release 2.6.0

• data – Contents of file to write. Can be a string, a generator or a file object. The last two
options will allow streaming upload (i.e. without having to load the entire contents into
memory). If None, this method will return a file-like object and should be called using a
with block (see below for examples).

• overwrite – Overwrite any existing file or directory.

• permission – Octal permission to set on the newly created file. Leading zeros may be
omitted.

• blocksize – Block size of the file.

• replication – Number of replications of the file.

• buffersize – Size of upload buffer.

• append – Append to a file rather than create a new one.

• encoding – Encoding used to serialize data written.

Sample usages:

from json import dump, dumps

records = [
{'name': 'foo', 'weight': 1},
{'name': 'bar', 'weight': 2},

]

As a context manager:
with client.write('data/records.jsonl', encoding='utf-8') as writer:

dump(records, writer)

Or, passing in a generator directly:
client.write('data/records.jsonl', data=dumps(records), encoding='utf-8')

class hdfs.client.InsecureClient(url, user=None, **kwargs)
Bases: hdfs.client.Client

HDFS web client to use when security is off.

Parameters

• url – Hostname or IP address of HDFS namenode, prefixed with protocol, followed by
WebHDFS port on namenode

• user – User default. Defaults to the current user’s (as determined by whoami).

• **kwargs – Keyword arguments passed to the base class’ constructor.

Note that if a session argument is passed in, it will be modified in-place to support authentication.

class hdfs.client.TokenClient(url, token, **kwargs)
Bases: hdfs.client.Client

HDFS web client using Hadoop token delegation security.

Parameters

• url – Hostname or IP address of HDFS namenode, prefixed with protocol, followed by
WebHDFS port on namenode

• token – Hadoop delegation token.

• **kwargs – Keyword arguments passed to the base class’ constructor.

18 Chapter 2. User guide

hdfs Documentation, Release 2.6.0

Note that if a session argument is passed in, it will be modified in-place to support authentication.

2.3.2 Extensions

The following extensions are currently available:

Kerberos

Support for clusters using Kerberos authentication.

This extension adds a new hdfs.client.Client subclass, KerberosClient, which handles authentication
appropriately with Kerberized clusters:

from hdfs.ext.kerberos import KerberosClient
client = KerberosClient('http://host:port')

To expose this class to the command line interface (so that it can be used by aliases), we add the following line inside
the global section of ~/.hdfscli.cfg (or wherever our configuration file is located):

autoload.modules = hdfs.ext.kerberos

Here is what our earlier configuration would look like if we updated it to support a Kerberized production grid:

[global]
default.alias = dev
autoload.modules = hdfs.ext.kerberos

[dev.alias]
url = http://dev.namenode:port

[prod.alias]
url = http://prod.namenode:port
client = KerberosClient

class hdfs.ext.kerberos.KerberosClient(url, mutual_auth=’OPTIONAL’,
max_concurrency=1, root=None, proxy=None,
timeout=None, session=None, **kwargs)

Bases: hdfs.client.Client

HDFS web client using Kerberos authentication.

Parameters

• url – Hostname or IP address of HDFS namenode, prefixed with protocol, followed by
WebHDFS port on namenode.

• mutual_auth – Whether to enforce mutual authentication or not (possible values:
'REQUIRED', 'OPTIONAL', 'DISABLED').

• max_concurrency – Maximum number of allowed concurrent authentication requests.
This is required since requests exceeding the threshold allowed by the server will be unable
to authenticate.

• proxy – User to proxy as.

• root – Root path, this will be prefixed to all HDFS paths passed to the client. If the root is
relative, the path will be assumed relative to the user’s home directory.

2.3. API reference 19

http://web.mit.edu/kerberos/

hdfs Documentation, Release 2.6.0

• timeout – Connection timeouts, forwarded to the request handler. How long to wait
for the server to send data before giving up, as a float, or a (connect_timeout,
read_timeout) tuple. If the timeout is reached, an appropriate exception will be raised.
See the requests documentation for details.

• session – requests.Session instance, used to emit all requests.

• **kwargs – Additional arguments passed to the underlying HTTPKerberosAuth class.

To avoid replay errors, a timeout of 1 ms is enforced between requests. If a session argument is passed in, it will
be modified in-place to support authentication.

Avro

Read and write Avro files directly from HDFS.

This extension enables streaming decoding and encoding of files from and to HDFS. It requires the fastavro library.

• AvroWriter writes Avro files on HDFS from python objects.

• AvroReader reads Avro files from HDFS into an iterable of records.

Sample usage:

It also features an entry point (named hdfscli-avro by default) which provides access to the above functionality
from the shell. For usage examples and more information:

$ hdfscli-avro --help

class hdfs.ext.avro.AvroReader(client, hdfs_path, parts=None, reader_schema=None)
Bases: object

HDFS Avro file reader.

Parameters

• client – hdfs.client.Client instance.

• hdfs_path – Remote path.

• parts – Part-files to read, when reading a distributed file. The default is to read all part-
files in order. See hdfs.client.Client.parts() for details.

• reader_schema – Schema to read the data as. If specified, it must be compatible with
the writer’s schema (the default).

The contents of the file will be decoded in a streaming manner, as the data is transferred. This makes it possible
to use on files of arbitrary size. As a convenience, the content summary object of the remote file is available on
the reader’s content attribute.

Usage:

with AvroReader(client, 'foo.avro') as reader:
schema = reader.writer_schema # The remote file's Avro schema.
content = reader.content # Content metadata (e.g. size).
for record in reader:

pass # and its records

schema
Get the underlying file’s schema.

The schema will only be available after entering the reader’s corresponding with block.

20 Chapter 2. User guide

http://docs.python-requests.org/en/latest/api/#requests.request
https://avro.apache.org/docs/1.7.7/index.html

hdfs Documentation, Release 2.6.0

writer_schema
Get the underlying file’s schema.

The schema will only be available after entering the reader’s corresponding with block.

class hdfs.ext.avro.AvroWriter(client, hdfs_path, schema=None, codec=None,
sync_interval=None, sync_marker=None, metadata=None,
**kwargs)

Bases: object

Write an Avro file on HDFS from python dictionaries.

Parameters

• client – hdfs.client.Client instance.

• hdfs_path – Remote path.

• schema – Avro schema. If not specified, the writer will try to infer it from the first record
sent. There are however limitations regarding what can be inferred.

• codec – Compression codec. The default is 'null' (no compression).

• sync_interval – Number of bytes after which a block will be written.

• sync_marker – 16 byte tag used for synchronization. If not specified, one will be gener-
ated at random.

• metadata – Additional metadata to include in the container file’s header. Keys starting
with 'avro.' are reserved.

• **kwargs – Keyword arguments forwarded to hdfs.client.Client.write().

Usage:

with AvroWriter(client, 'data.avro') as writer:
for record in records:

writer.write(record)

schema
Avro schema.

write(record)
Store a record.

Parameters record – Record object to store.

Only available inside the with block.

Dataframe

Read and write Pandas dataframes directly from HDFS.

This extension requires both the avro extension and pandas to be installed. Currently only Avro serialization is
supported.

hdfs.ext.dataframe.read_dataframe(client, hdfs_path)
Read dataframe from HDFS Avro file.

Parameters

• client – hdfs.client.Client instance.

• hdfs_path – Remote path to an Avro file (potentially distributed).

2.3. API reference 21

http://pandas.pydata.org/

hdfs Documentation, Release 2.6.0

hdfs.ext.dataframe.write_dataframe(client, hdfs_path, df, **kwargs)
Save dataframe to HDFS as Avro.

Parameters

• client – hdfs.client.Client instance.

• hdfs_path – Remote path where the dataframe will be stored.

• df – Dataframe to store.

• **kwargs – Keyword arguments passed through to hdfs.ext.avro.AvroWriter.

2.3.3 Configuration

Command line interface configuration module.

This module provides programmatic access to HdfsCLI’s configuration settings. In particular it exposes the ability to
instantiate clients from aliases (see Config.get_client()).

class hdfs.config.Config(path=None, stream_log_level=None)
Bases: ConfigParser.RawConfigParser

Configuration class.

Parameters

• path – path to configuration file. If no file exists at that location, the configuration parser
will be empty. If not specified, the value of the HDFSCLI_CONFIG environment variable
is used if it exists, otherwise it defaults to ~/.hdfscli.cfg.

• stream_log_level – Stream handler log level, attached to the root logger. A false-ish
value will disable this handler. This is particularly useful with the catch() function which
reports exceptions as log messages.

On instantiation, the configuration object will attempt to load modules defined in the autoload global options
(see Custom client support for more information).

get_client(alias=None)
Load HDFS client.

Parameters alias – The client to look up. If not specified, the default alias be used
(default.alias option in the global section) if available and an error will be raised
otherwise.

Further calls to this method for the same alias will return the same client instance (in particular, any option
changes to this alias will not be taken into account).

get_log_handler(command)
Configure and return log handler.

Parameters command – The command to load the configuration for. All options will be looked
up in the [COMMAND.command] section. This is currently only used for configuring the
file handler for logging. If logging is disabled for the command, a NullHandler will be
returned, else a TimedRotatingFileHandler.

class hdfs.config.NullHandler(level=0)
Bases: logging.Handler

Pass-through logging handler.

This is required for python <2.7.

Initializes the instance - basically setting the formatter to None and the filter list to empty.

22 Chapter 2. User guide

hdfs Documentation, Release 2.6.0

emit(record)
Do nothing.

hdfs.config.catch(*error_classes)
Returns a decorator that catches errors and prints messages to stderr.

Parameters *error_classes – Error classes.

Also exits with status 1 if any errors are caught.

2.3.4 Utilities

Common utilities.

class hdfs.util.AsyncWriter(consumer)
Bases: object

Asynchronous publisher-consumer.

Parameters consumer – Function which takes a single generator as argument.

This class can be used to transform functions which expect a generator into file-like writer objects. This can
make it possible to combine different APIs together more easily. For example, to send streaming requests:

import requests as rq

with AsyncWriter(lambda data: rq.post(URL, data=data)) as writer:
writer.write('Hello, world!')

flush()
Pass-through implementation.

seekable()
Implement file-like method expected by certain libraries.

fastavro relies on it in python 3.

tell()
No-op implementation.

write(chunk)
Stream data to the underlying consumer.

Parameters chunk – Bytes to write. These will be buffered in memory until the consumer
reads them.

exception hdfs.util.HdfsError(message, *args, **kwargs)
Bases: exceptions.Exception

Base error class.

Parameters

• message – Error message.

• args – optional Message formatting arguments.

hdfs.util.temppath(*args, **kwds)
Create a temporary path.

Parameters dpath – Explicit directory name where to create the temporary path. A system depen-
dent default will be used otherwise (cf. tempfile.mkstemp).

Usage:

2.3. API reference 23

hdfs Documentation, Release 2.6.0

with temppath() as path:
pass # do stuff

Any file or directory corresponding to the path will be automatically deleted afterwards.

24 Chapter 2. User guide

CHAPTER 3

Sample script

More examples can be found in the examples/ folder on GitHub.

25

hdfs Documentation, Release 2.6.0

26 Chapter 3. Sample script

Python Module Index

h
hdfs.client, 12
hdfs.config, 22
hdfs.ext.avro, 20
hdfs.ext.dataframe, 21
hdfs.ext.kerberos, 19
hdfs.util, 23

27

hdfs Documentation, Release 2.6.0

28 Python Module Index

Index

A
acl_status() (hdfs.client.Client method), 12
allow_snapshot() (hdfs.client.Client method), 12
AsyncWriter (class in hdfs.util), 23
AvroReader (class in hdfs.ext.avro), 20
AvroWriter (class in hdfs.ext.avro), 21

C
catch() (in module hdfs.config), 23
checksum() (hdfs.client.Client method), 12
Client (class in hdfs.client), 12
Config (class in hdfs.config), 22
content() (hdfs.client.Client method), 12
create_snapshot() (hdfs.client.Client method), 12

D
delete() (hdfs.client.Client method), 13
delete_snapshot() (hdfs.client.Client method), 13
disallow_snapshot() (hdfs.client.Client method),

13
download() (hdfs.client.Client method), 13

E
emit() (hdfs.config.NullHandler method), 22

F
flush() (hdfs.util.AsyncWriter method), 23
from_options() (hdfs.client.Client class method), 14

G
get_client() (hdfs.config.Config method), 22
get_log_handler() (hdfs.config.Config method), 22

H
hdfs.client (module), 12
hdfs.config (module), 22
hdfs.ext.avro (module), 20
hdfs.ext.dataframe (module), 21
hdfs.ext.kerberos (module), 19

hdfs.util (module), 23
HdfsError, 23

I
InsecureClient (class in hdfs.client), 18

K
KerberosClient (class in hdfs.ext.kerberos), 19

L
list() (hdfs.client.Client method), 14

M
makedirs() (hdfs.client.Client method), 14

N
NullHandler (class in hdfs.config), 22

P
parts() (hdfs.client.Client method), 14

R
read() (hdfs.client.Client method), 14
read_dataframe() (in module hdfs.ext.dataframe),

21
rename() (hdfs.client.Client method), 15
rename_snapshot() (hdfs.client.Client method), 15
resolve() (hdfs.client.Client method), 15

S
schema (hdfs.ext.avro.AvroReader attribute), 20
schema (hdfs.ext.avro.AvroWriter attribute), 21
seekable() (hdfs.util.AsyncWriter method), 23
set_acl() (hdfs.client.Client method), 15
set_owner() (hdfs.client.Client method), 16
set_permission() (hdfs.client.Client method), 16
set_replication() (hdfs.client.Client method), 16
set_times() (hdfs.client.Client method), 16
status() (hdfs.client.Client method), 16

29

hdfs Documentation, Release 2.6.0

T
tell() (hdfs.util.AsyncWriter method), 23
temppath() (in module hdfs.util), 23
TokenClient (class in hdfs.client), 18

U
upload() (hdfs.client.Client method), 17

W
walk() (hdfs.client.Client method), 17
write() (hdfs.client.Client method), 17
write() (hdfs.ext.avro.AvroWriter method), 21
write() (hdfs.util.AsyncWriter method), 23
write_dataframe() (in module hdfs.ext.dataframe),

21
writer_schema (hdfs.ext.avro.AvroReader attribute),

20

30 Index

	Installation
	User guide
	Quickstart
	Advanced usage
	API reference

	Sample script
	Python Module Index
	Index

